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Ct4Jfr^ Voll IW^i^l^ 
In this section the shape integral is calculated for a number of idealized asym- 
metric distributions when, from Equation (195) 

\ 

It is obvious from Equation (196) that (as long as viscous effects are unimpor- 
tant) maximum cushion pressure will be obtained when X     is maximum.  This 
implies that the maximum pressure peak must be on the cushion side of the jet 
centerline, as indicated in Figure 66. 

"I 

CUSHION PRESSURE LESS 
THAN SIMPLE THEORY 

GREATER 

Figure 66.        Symmetric and Asymmetric Jet 
Total Head Profiles. 

It should be remembered that the ratio 

"TSTp mean 

is entirely artificial; that is to say, it is not a true parameter, since it will 
change with the shape integral ( ^ ).   This leads to a number of anomalies, 
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and indeed, the only reason for presenting the following results is the wide- 
spread use of the ratio &%A± P 
measurements. 

The Jet Thickness Anomaly 

as a means of reporting experimental 

Sup^se now that a test nozzle has the geometry of Figure 67   and that an 
inst,,t has been placed in the nozzle, unknown to the experimenter.   Thus a 
traverse across the (original) nozzle width ( 'fc ) gives the total head distribu- 
tion indicated in the figure.   As a result, the unobservant experimenter com- 
putes the mean total pressure as 

AP. »     AP 
•Heouri 

and the cushion pressure ratio as 

AR Me«** 

VKcux. T 

AP,       ^ KVA4C. 

INSERT 

\\\\\\\\\\\XL   4 

/    /    ///////////////' 

Figure 67.        Geometry for the Jet Thickness Anomaly. 

The simple theory equation for ^-i)^   gives him 

At       -   eCvfe)- C%y 
AP( 

C'ir/4^ 
♦M»**«. ^    ^R MJUc 
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The correct equation is 

'ZC^'k) - ^-/R) 

Thus the apparent ratio between experiment and theoretical results is 

Experiment 
Theory 

Thus, the unobservant experimenter would conclude that his measured ratio 
A^A, p^-mean exceeds the "theoretical" value.   His belief would be illusory, 
however, and in the same way the limit cases of the total head distributions 
discussed below will show the misleading result that a jet should have all 
its energy concentrated at the inner boundary.   While this conclusion is per- 
fectly correct so far as obtaining the maximum value of the ratio ( &Jfc,/&.P 
mean) is concerned, minimizing the mean total pressure has no physical 
Importance;  it does not correspond to minimum jet power, for example. 

Rectangular Total Head Distributions 

AP 

(i-t)K *** 

urn* 

- it rb < x <^) 
Figure 68.        Two Rectangular Total Head 

Distributions. 
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For the first of the two distributions sketched in Figure 68, it can be seen that as 
^ %   diminishes we encounter the physical limitation of reverse flow, which 
requires AA.< A^ .   Since the jet static pressure gradient *^^. > O , this 
condition must occur at either J »^r or A • jit .   For the first position, 

But APt + 6%.    = z&P**^ ; 

For   ^   -  /yZi 

Thus at   **£ ) the limiting condition is 

This limit is plotted in Figure 69, and the curves of cushion pressure ratio for 
the stepped distribution are plotted in Figure 70. 
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Figure 69.       Solution Limits for the Rectangular 
Total Pressure Distribution. 
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Figure 70.        Effect of a Stepped Rectangular Jet Total 
Head Distribution Upon Cushion Pressure. 
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A General Linear Variation 

(-t<y<. t) 

Iji/*)^ 'tyt) - t*£*i*p' 

A = 
11 + ^//>/?} 

B'igure 71.       General Linear Variation. 

This case was first solved in Reference 13, from which Figure 72 was ab- 
stracted. 

The reverse flow limitation can in this case be simplified to 

BUt ^ * 4P - zaP 

^c. <     Z       ~       Ml 
AP men* &?* tu**** 

&   e/« * ^VAP.) 
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Figure 72.        Effect of a Linearly Varying Jet Total 
Head Distribution Upon Cushion Pressure. 
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This limit is superimposed on Figure 72 and is seen to confine the attainable 
cushion pressures to a fairly narrov/ band.   However, a value of (A^/ßP mean) 
equal to 4/3 times the (uniform    -A'?   ) theory value is seen to be attainable at 
the limit     ^A) -♦ 1«0' 

A General Power Law Variation 

This case includes that of Figure 71, when /l£.    or 4r    = 0 and also the 
constant total head case (-vu -*,<»0 ).   It is based on the relationship 

*pi 
v»u 

although the actual value of      !<■    does not influence the results. 

M+7. 

Figure 73.       General Power Law Distribution. 
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It is obvious that the maximum cushion pressure (ai't/fc  =1,0) will be twice 
the simple theory value, in the limit "W -**** . 

CUSHION PRESSURE AS A RATIO OF MEAN TOTAL PRESSURE WITH A 
LINEAR VARIATION IN TOTAL PRESSURE ACROSS THE JET (EXPONENTIAL 
THEORY) 

In this section the problem will be simplified by considering only a linear vari- 
ation of total pressure across the jet. 

From Equation (164) cushion pressure is given by 

^   - l*2*i^'H 
and the mean total pressure by 

For a linear variation in   Afx    across the jet 

where 

Substituting in Equation (197), 

(197) 

^    -   ij*^- (198) 
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4- 

From Equation (198), 

(199) 

^ '   ^ • - -g- A• --   J*^I +-%).     (200) 

This expression is evaluated for various pressure ratios, 

£^    »    O /  Vz ,   ^   Z    oo t     over the height range    0 < % ^ Xo 

and is plotted in Figure 74. 

For x^ *   O        J^Z    » | |     the expression reduces to    1   — e- 

For   AT -**■ oc* ^    oyp   _>. o   ,       the expression becomes 

At values of the pressure ratio less than unity, that is to say, when 

the solution is limited by the condition 

AP..       >     A^ ■ 

otherwise^here would be a reversal of flow in the jet next to the cushion. 
The existence of this limit was noted in the previous section. 

That is 

for real values. 
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When the limit is reached. 

o - .:**)- 

>      ■  t [' -('-•**)' 
and •I 

This is computed and plotted in Figure 74.   It will be seen that the limit is 
asymptotic to the curve for ^-/f3«,    = 0 at great heights and reaches the 
value 1 when Q/fa     = 1 at zero heights. 

The results are replotted in Figure 75 for fixed heights with pressure ratio 
as abscissa. 

THE EFFECT OF A LINEAR TOTAL HEAD VARIATION OF THE CUSHION 
PRESSURE PARAMETER ^Jjg^ 

Because of the large variation of A%/AfL  with jet total pressure gradient, 
we are forced to conclude that the cusMon pressure parameter AJf defined 
in Equation (142) is a more meaningful measure of an annular jet's effective- 
ness. 

Therefore, it is of interest to see how the cushion pressure parameter is af- 
fected by nonuniformity of total pressure distribution in the jet.   Since this 
parameter is the measure of the pressure obtained in the cushion in relation 
to the energy supplied to the jet, the presence of a well-defined optimum would 
indicate the choice of jet structure to give the best operating performance. 

For simplicity in computation we considered a distribution which gives a linear 
variation of total pressure across the jet.   This may be defined by a pressure 
ratio ^ At*    where the total pressure ^R    varies from  Ä^  at the out- 
side of tne jet to   Afc.   on ^e cushion side. 

Then 4P^        * A^C»   ^  ^  J^') (201) 
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where *&-        ~     AP/'        —     | . 

Substituting for   ^«x      in the expression for cushion pressure, Equation 
(145) results in 

(202) 

We should then evaluate this expression over a range of values of the pressure 
ratio parameter yv-   and the height parameter *y^ . 

This is an excessively laborious computation which may properly be deferred 
until the value of the result is more clearly apparent.   However, it is likely 
that the result will be intermediate between the two simpler cases in which 
rl  = 0 (exponential flow) and   /}  =  1 (free-vortex flow). 

Accordingly, these two cases were computed over the ranges 

Variation in Cushion Pressure Parameter According to Exponential Flow 
Theory With a Linear Gradient of Total Pressure Across the Jet 

The cushion pressure parameter is given by 

Substituting 

(203) 
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-^ -> Writing ^      -      A —^    M 

— i /'' ' 

r A [B,    -   ^«-c " - AB,)] 

^ 

(204) 

where 

A =       'Vie 

^ =       e/^ -    /   , 

Note: Numerator is unreal when      ^v-        -«d       "^•/^l— AB ) 

Der.ominator is unreal when    ^v- <      (^ i — B, J/l /\si    , 

Since ^^   is essentially  <o at both these limits, the denominator limit is 
effective because 

> 

Oetails of the actual computation are omitted from this report. It should be 
remarked that the expression in this form requires a numerical integration of 
the denominator for each point evaluated.    Since this   appears to be a mono- 
tonic type of function of  **-, a sufficient accuracy may be obtained from a 
fairly small number of stations o ^"x * 1, 
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The computed values are presented in Table 3.     These are plotted in Figure 
76 as the broken lines, together with the results (full lines) from a similar 
computation for free-vortex flow described in the next section. 

Variation in Cushion Pressure Parameter According to Free-Vortex Flow 
with a Linear Gradient of Total Pressure Across the Jet 

In free-vortex flow «7   = Ijand we have for the cushion pressure parameter, 
from Equation (145) 

0■* -^tl^i^  (%£**f*Jc%'H)äi'<te)] ^ 
The simple case when    AR    - constant was given by Equation (149). 

Putting jfe£ » x   and writing -^z = «u , we have   R • %,*'*'  so that 

^ • ^^    '• 

Then, 

(i HO-f fff^stTctf,^   ^c   ~C^^tzL*^X'+^)d*]d*' 

J^—TT- ^ 7^  .   (206) 

The expression is evaluated over the ranges 

and | <C       «.        ^.    4-   • 
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TABLE 3 

COMPUTED VALUES OF &/&,' ^fe FOR A LINEAR GRADIENT 
OF TOTAL PRESSURE ACROSS THE NOZZLE - EXPONENTIAL THEORY 

Pc/Pa       R/t = 0.25 (KJ3 1.0 2.0 4.0 10.0 

5 4.35 2.67 1.43 0.675 0.283        0.0795 

3 4.12 

2 4.02 2.47 1.38 0.667 0.?83 0.082 

1.5 3.81 2.30 

1.25 3.70 

1.00 4.075 
x 

0.95 

0.925 

0.800 

0.687 

0.600 

0.418 

0.400 

0.228 

0.200 

0.095 

2.26 1.27 0.639 0.279 0.081 

2.21 

2.48 

X 

1.25 0.630 0.276 0.0803 

1.22 

X 

0.613 0.268 0.0807 

0.602 

X 

0.263 

0.249 
X 

0.0792 

0.0760 

0.0700 

X 
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 EXPONENTIAL FLOW 
.    FREE-VORTEX FLOW 

0.1 0.2 0.4    0.6        1.0 2.0 4.0 6.0 

PRESSURE RATIO ACROSS JET    A% /d£ 
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Figure 76.        Cushion Pressure Parameter With Linear 
Gradient of Total Pressure Across Jet - 
Free-Vortex and Exponential Flow. 
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As in the preceding case we omit details of the computation and give the result- 
ing values in Table 4.    These are plotted in Figure 76 in conjunction with those 
from the exponential flow method.    As before, we observe that the curves are 
bounded to the left by the condition that the denominator shall be wholly real. 

Discussion of the Results 

It is remarkable that the limit for real values seems to be the same for both 
cases.  There is no very obvious reason why this should be so.   The physical 
meaning, of course, is that the flow pattern near the inner (cushion side) boun- 
dary of the jet can not be maintained when the total head pressure Aß is re- 
duced to the local static pressure A-f»« •   Therefore, the limit appears when 
Af^«Ab , assuming an absence of other disturbance to the flow locally. How- 
ever,   the two methods give differing values of Afeat the same operating height 
and pressure ratio, and, if the limits do really coincide, the value of the cush- 
ion pressure parameter at the limit is a function only of the pressure ratio. It 
therefore depends upon other factors which are common to both methods.   Fur- 
ther, it can be hopefully said that the same limit will apply to the Payne theory, 
intermediate between the two computed cases. 

Considering first the curves for exponential flow, it is seen that a high value of 
the pressure ratio is favorable, though only slightly so.   The effect is most 
marked at low height ratios, and there appears to be a minimum close to the 
reverse flow limit for heights below R/^  - 1.   Here, too. the reverse flow 
limit is approaching asymptotically Pc/p   =1, and since the exponential flow 
method is more valid at these low heights, this is clearly indicative of the ad- 
vantage of having ^c/f*   much greater than unity for heavily loaded, low-flying 
GEMs. 

At the other end of the scale, at tyfc  = 10, the exponential method loses valid- 
ity.   This curve has been plotted chiefly for comparison with the free-vortex 
result.   This shows a gentle maximum at ^c/fi. ^ 1, which means simply that 
a uniform total pressure across the jet is more efficient than any linear varia- 
tion of pressure.   Even so, the effect is slight and becomes less marked at low- 
er operating height ratios. 

Therefore, the conclusion is that pressure gradient in the jet makes very little 
difference when fy^    is greater than 2, let us say. 

These results suggest that it may not be worthwhile to work out the cases using 
the more precise model of the flow developed in this report,   having regard to 
the computational difficulty using ordinary methods.   This is a job for an elec- 
tronic computer, and, for the sake of completeness,   it would be pleasant to see 
the result.   However, it is fairly evident what this will be.   Over the inter- 
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TABLE 4 

COMPUTED VALUES OF ife^ • ^c     FOR A LINEAR GRADIENT 
OF TOTAL PRESSURE ACROSS THE NOZZLE ~ FREE-VORTEX FLOW ( y = 1) 

Pc/Pa R/t=2 3 4 6 10 

5 0.905 0.492 0.330 0.186 0.0823 

2 0.957 0.503 0.333 0.1885 0.0855 

1 0.971 0.507 0.333 0.1870 0.875 

0.8 0.960 0.508 0.335 0.1900 0.870 

0.6 0.960 0.494 0.335 0.1885 0.868 

0.57        0.960 

x 
0.40 0.492 0.332        0.1920 0.862 

0.37 

0.27 

0.20 

0.176 

0.098 (limit for  R/t = 9) 

0.490 
X 

0.319 
X 

0.1935 0.833 

0.1750 
X 

0.794 
X 
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mediate range of height, the Payne model moves from approximation to the free- 
vortex result at the high end (R/fc, = 10) toward   the exponential result at the 
low end.   In the middle it will be between them, and, from the appearance of the 
curves, it will probably show only slight effects of pressure gradient with some 
advantage in having the pressure high on the cushion side.   However, the effect 
will be slight.and one should not expect a gain of more than 10 percent or so from 
a pressure ratio 5:1, compared with a uniform pressure design. 

In an earlier station,the effect of a total pressure gradient in the jet was exam- 
ined for free-vortex flow in terms of the parameter^aPMe<w,the cushion pressure 
ratio to the linear mean total pressure in the jet.   This showed a larger effect 
than the present analysis;   for instance,  at     ß-^fe-  »■  2L. 

•> 

s/y 

*t-' H< Ah 

© %:t> A%>_:78      ®^ -or' At^ -7* M -äP. «•CÄKf 

Figure 77. Pressure Distributions in Jets. 

Although these jets look the same, they arc absorbing different amounts of 
power. 

Power     ©c: 'I    K   (^^ 'H)   <*% > 

and this is greater when the higher total pressure is on the same side as the 
higher static { = cushion) pressure.   Not surprisingly, the more powerful jet 
produces greater cushion pressure, which accounts for most, if not all, of 
the difference in   ^■&-/^p        • 

This example serves to illustrate the superiority of the cushion pressure 
parameter as a criterion of cushion pressure achieved in proportion to power 
expended in the jet. 
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Chapter Six 

VISCOUS MIXING EFFECTS IN THE ANNULAR JET 

The first known treatment of the problem of viscous mixing effects in the annu- 
lar jet is due to Chaplin^0, who used a simple analysis to show that mixing al- 
ways causes a reduction in performance, relative to the idealized in viscid flow 
case. 

It is doubtful whether real precision in the calculation of mixing effects can ever 
be achieved, because of the complexity of the induced flow fields.   Nor can these 
effects be measured until a better understanding of annular jet flew mechanisms 
has been achieved, since it is impossible to say what portion of the observed loss 
is due to viscosity and what is due to nozzle diffusion and local flow distortions. 
The position is rather analogous to trying to measure the viscous drag of wings 
before the publication of Lanchester and Prandtl's lifting line theories, when the 
effects of aspect rntio on lift-curve slope and induced drag were unknown. 

Reviewing the possible sources of loss which have to be separated from the vis- 
cous losses, if experimental data are to be obtained on the latter, we see that 
there are really only five: 

1. Loss of cushion pressure due to nonuniformity of 
total head. 

2. Loss of cushion pressure due to a local flow distortion, 
where the flow angle lr not the same as the geometrical 
nozzle angle. 

3. Total pressure loss due to diffusion or separation in the 
nozzle. 

4. Fundamental reduction in cushion pressure associated 
with a curved planform. 

5. Experimental error; the latter may be 

(a) simple errors in instrumentation or calibration, 

(b) measurements at the wrong location (measuring 
"cushion pressure" near the jet, for example), or 
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(c)  rig leakage, such as a twc-dimensional jet rig 
which has a low energy j-^t .iear the boundaries. 

There are evidently enough hazards to render the unquestioning acceptance of 
published measurements quite impracticable, at least without a detailed analy- 
sis of the investigators test procedures and equipment.   And the problem of 
eliminating ail but the viscous losses is correspondingly more difficult. 

Figure 78 presents measurements of the cushion pressure ratio Afrc/^p,^^ 
made in three different investigations.    There is obviously a significant differ- 
ence between the NASA     model, which has a circular planform, and the two- 
dimensional rig results, and we might be tempted to assume that the difference 
in planform is the cause.   The three-dimensional correction, of Equation (114) 
Indicates that this effect is small, however.   Reference 16 also gives two meas- 
urements of the total head distribution across the nozzle of the Kuhn and Carter 
nozzle   showing considerable distortion from the uniform condition.   If we take 
a linear approximation to this distortion, we can extrapolate as shown in Figure 
79.   Using the theory of the previous chapter we can use this to obtain the change 
in cushion pressure, as shown in Figure 80.   Note that although the Figure 79 
extrapolation becomes progresoively less reliable as we move above -*><?   -- 3.0, 
the importance of flow distortion becomes progressively less great, so that this 
inaccuracy is relatively unimportant. 

Making these corrections to the data in Figure 78 gives the plot shown in Figure 
81. 

There is evidently still a significant difference between the two sets of points, 
and this is presumablv due to either a diffusion loss in the Reference 16 model 
nozzle, and/or to its jet not emerging at the nominal nozzle angle oi KP  ~ 0 . 
What is clearly evident is that even the two-dimensional test rig results are 
well below the inviscid flow theory line, and most of this deficiency is presum- 
ably attributable to viscous mixing and nozzle diffusion loss effects.   Certainly 
a negligible amount is due to the vertical flow angle diverging from the geometric 
angle, as shown by the very careful streamline plotting carried out in Reference 
21, from which Figure 82 is abstracted. 

We can approach the viscous mixing problem in at least two ways.   The most 
elementary regards the passage of one stream of air over another as a "skin 
friction" problem which is exactly analogous to the passage of air over a solid 
surface.   Unfortunately this approach gives numerical results only for the limit 
solution of stationary cushion air. 
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Figure 78.       Some Experimental Measurements of the 
Cushion Pressure Parameter at O'    = 0°. 
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Figure 79.       Assumed Equivalent Linear Total Head 
Distribution Across the Kuhn and Carter 
Model Jet. 
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Figure 80.        Increment of the Cushion Pressure Ratio Due to 
Total Head Distortion in the Kuhn and Carter Model. 
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ffe-Ä 

Attemsttv^y, Wi l^ki um a more detailed flow picture which accounts for the 
details of the flow entratemeiü process inside the cushion.   At the present time 
there seems little point in investigating the finer details of the ambient air en- 
trainment, since this takes place at (approximately) ambient static pressure, 
and should not greatly influence the cushion pressure, therefore. 

THE "AIR FRk.TION" CONCEPT 

In Reference 3 it is shown thai the "effective skin friction loss " of a Jet of 
velocity ( -^J   ) flowing over another stream of air (with velocity "^    ) is 
given apprcximateiy by a skin friction coefficient, 

JVU 

C 
^ >C^} (>~Z.) 

^j- 

(207) 

from the "^VCAC/ ^    measurements of Reference 22. 

ntact with the cushion air is 5^.   .the "friction If the length of the jet surtaee m vo 
iorce" is 

y 
-gf      ^c 

c^c^ X-^j    s AT. (208) 

II dR is Hie i io/.zle toti:) iicad on the eushiou side 

AP. ^^ 

c^c^o- ^O (209) 

AR 

From Equation (32), for conservation of total head ^ 
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For thick jets, the mixing occurs in the region where the local static pressure 
is approximately equal to the cushion value. 

-i 
(211) 

AT    / -     CS^Cl-    ö^pj-8-.     ,212) 

From Equation (101); 

APN APj,^    AP,   R Z"1-', (2i3) 

and for uniform nozzle total head 

AP AP "R     ^ ^AFLJ  '   (214) 

The accuracy of the assumptions is such that we may as well use the inviscid 
value fo:    Afe/Af*,    inside the square root sign, when the jet is thick; that is, 
when ^.^ 1.0 say, so that 

Afc -      \      -    Q|^,_   A^w^t (2^ 

Note from the geometry of Figure 41 that 

s, - ^R. %:JL   -a*0'"?-     (2i6) er 
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When viscosity causes an appreciable reduction in   **^ , we must solve Equa- 
tion (214) exactly.   By squaring we have 

In the quadratic solution to (217) 

''2. 

^Tc^      J '    (218) 

^ ^ 

The minus root is the correct solution.   As can be seen from Figure 83, the 
difference between Equations (215) and (219) is quite small. 

This particular analysis cannot be extended into the "thin jet" regime because 
the concept of "skin friction" between two fluid streams, both of which are thick- 
er than the mixing zone between them, is then invalidated. 

The theoretical limit is of course   ^/.  =5.2 

yb/LIMIT ^■ 

As shown in Figure 83, this approach appears to give fair agreement with ex- 
periment for Jb-yfet 1.5, when we take the limit case of still cushion air 
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Figure 83. The "Air Friction" Theory of Viscous Losses 
in a Thick Jet Compared With Inviscid Flow 
Theory for 0    = 0°. 
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i'^t    - 0). although the Kuhn and Carter points still fail below the line.   Pre- 
sumably the true value of iJJ  is somewhere between zero and unity, so that 
all points would fix'u it in the range o *- '^^•1.5, and prcsuniably the 
deficiency would then represent nozzle losses. 

The   air friction   theory should show a loss in cushion pressure as the length 
of jet in contact with the cushion is increased.   Some experimental work at 
Aeronutronic" , involving the use of rigid nozzle extensions, enables us to 
make a rough check on this hypothesis. 

Some raw data from Reference 23 are displayed in Figure 84,   in comparison 
with results obtained from conventional two-dimensional test rigs.   The cushion 
pressure   is shown to fall significantly when an extension is fitted, which does 
not agree with the Payne tests reported in a previous chapter.   We presume 
this is due to some instrumentation error on the Aeronutronic rig. 

When the inner extension is shortened or removed, more of the jet will be in 
contact with the cushion.   Thus relative to the extended nozzle results of Fig- 
ure 84, the cushion pressure should be less than even the reduced values ob- 
tained with symmetrical extensions.   As shown in Figure 85, this is in fact so, 
although the results can hardly be regarded as indicating a consistent trend. 

Now from Equation (214) we can express the reduction in cushion pressure by 
the equation 

(220) 

A4 
0r Ösf^A        =     ~ A^c   CTr  O - fMlg; jcrgc ) (221) 

when       Ö   =0°, so that     R* -4L . 

For the geometry of Figure 85; 

Asy4     - (So - -^OA; 
of course. 
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Figure 84.        Effect of Nozzle Extensions on the 
Cushion Pressure Ratio (^   = 0°). 
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Figure 85.        Effect of Exposing the Inner Surface of the 
Jet When Nozzle Extensions Are Used (Ref- 
erence 23). 
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Figure 86.       Reduced Aeronutronic Data of Figure 85. 
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Equation (221) has been used to plot the expression 

« * Mir 

(222) 

in Figure 86.      The scatter is very large, as we would expect in analyzing 
this type of data.   Nevertheless an appropriate trend is detectable and all 
points fall on or below the Cf = 0.16 curve, indicating "VT/O"- > 0-   More- 
over, the -Cw/lv  =1.0 points are noticably higher, on the average, than the 
JLef^r =3.0 ones;  this again is reasonable because the entrained vortex now 
would be virtually parallel to the jet in the latter case. 

A GENERAL THEORY OF MIXING LOSS 

V-r_—--^^-g _^_^ 
y-/  /*/ 7 / / //// 7 / s /////// s 

Figure 87.        Mixing in the Annular Jet. 

Under equilibrium conditions, it is generally agreed that viscous mixing causes 
the entrained flows illustrated in Figure 87.   If 5^  and ^^ are distances 
along the jet surfaces on the cushion and ambient sides respectively, then from 
Reference 4, the entrained airflow ratio 

-^ x 

-w -wv; 

-*w N 

Z.   z. KV^ [ -i* 
s. ]• 
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For continuity of mass flow, the entrained cushion air must return to the cushion: 

and since some transfer of momentum has occurred, the momentum flux to am- 
bient of the main part of the jet is accordingly reduced. 

This must result in the cushion pressure being less than the value predicted for 
inviscid flow.   We can regard this either as being caused by a reduction of the 
mornenium flux to ambient (as in the previous section) or by a reduction in the 
curvature of the jet. 

From a long term point of view, the best approach is likely to involve express- 
ing the local jet velocity distribution in a suitable analytic form (such as the 
error-function distribution),   weighting it for the effect of varying static pressure, 
and solving the resulting equations for the inward and outward flows. 

In the present analysis ve shall take a simpler approach, using the general con- 
cepts of Reference 4, but making the use of the general momentum relationship 
of Equation (101) 

=   3: &h 
f?C 

We shall also assume that mixing on the ambient side of the jet does not influ- 
ence 3£L , because there is nominally no pressure change, so that all mixing 
effects are attributable to the cushion. 

The entrainment of cushion air reduces  J^   by an amount A 3^ as explained 
in the previous section, so that we may write 

% =        ^c 
-AX      -   F 

INVISC.t) C^ 
(223) 

where r      = a cushion entrainment term which will be discussed 
later. 

The flow picture of Figure 87 is similar to that of an overfed jet, as indicated 
in Figure 88.   However, the big difference is that we do not obtain as low a 
cushion pressure, unless all the primary vortex momentum ( ^   ) is dissipated 
CT,   -0). 

The momentum loss   A«Xc ^s reaciily calculated when the entrainment function 
is known, and it is reasonable to assume that the momentum flux Oc    into the 
cushion is equal to the momentum lost by the outgoing jet.   Then knowing  *Jv0 

and   J^    we know the mean effective velocity -v^ into the cushion. 
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Figure 88.        Two Ways of Portraying the Overfed Jet. 
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The momentum flux, 3^    , back to the jet is less than ^c  because of skin 
friction losses against the ground plane and base plate and because of air 
friction between the outside of the vortex and the inner cushion air. The inner 
air may be stationary or there may be a secondary vortex; possibly the former 
is true of a finite planform, and the latter of a two-dimensional test rifr.. When 
a secondary vortex exists the air friction will be much less, of course. 

We now proceed to express this chain of reasoning mathematically, assuming 
that entrainment takes place over <^y4 , where <^L is the distance over which 
entrainment occurs.   (From Figure 82, for example, we might expect^ <t>^j|£). 

Now#for mixing at constant static pressure (Figure 87) 

JN * Jj      +    3c (224) 

or, in terms of average values> 

-TW^-VH f-V^j       -4-   *0  ^C    ; 

*- *  (225) 

since the  emnined air mass flow is   run.^ ; 

3; 

^ (226) 

and ^ s    ^^e^)*    + ^   ' 
-JN    is the momentum flux at the nozzle.   However, when the vehicle is 

close to the ground, mixing occurs only on the innermost  portions ui the jet, 
and it would be unrealistic to take J^i   as the total value ( J^   ) for the whole 
jet, particularly in the zone of establishment ( <^^/t ^   5'2)'   We should 
rather weight   -JJ,    to be representative of the velocity and mass flow pertain- 
ing to that part of the jet in which mixing actually occurs. 

Using the vortex assumptions of Reference 4, and denoting C^  Cfß.   as the 
skin friction coefficients of the cushion air and ground respectively, then 
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referring to Figure 87 

q^ - ^ ^      ^f^ "^ ^"^-^C   . (227) 

The skin friction on the base plate is here neglected as being negligible, and for 
convenience we assume that the skin friction in both the ground and cushion 
regions can be based on the "V^ velocity. 

Then 3^       =      To -     «^    ^^•*'C 

= P; -ifv^c(cf.^<=f*); 

T - or     =   ^r^-e-<C<=fc - ^fc). 

(228) 

(229) 

Thus from Fig re 88 

•v X 

-fuC ^     ^   / (230) 

But from (210) and (224) 

^f^ /   J (231) 

4. 

where ^,   and  -wv^. are given by Equations (225) and (226).       A^- and "^j 
are of course mean effective values. 

(232) 
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The solution of Equation (232) can be accomplished in varying degrees of ac- 
curacy, depending upon how detailed we care to make the analysis of  31.   and 
«tiU^   .   Using the simple values given by Equations (225) and (226) and assum- 
ing uniform total head in the jet we can obtain a solution which is applicable at 
large values of>ß^. 

Nu 

AP AR  I^»vi    -C     ^CtAP.  U       r*» >> AVJ M.,*..^ l-*"*    *    ^CtAFJ APi 

(233) 

The non-dimensional ratios 

^        AP,'7      ? 2CtAf? ctC^r^r 

must be known before Equation (233) can be evaluated.   However, they are of 
second-order importance, since they appear only in the viscous correction to 
the exact solution, and they can be derived with sufficient accuracy from ex- 
ponential theory.   We proceed as follows: 

yz       ~        &■ (234) C^o 

at&tWf 

The mass flow on the cushion side of the point <v     is 

(235) 

(236) 
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Taking this value as average across the jet 

<*(**&$     "      ^_^     • <23T' 

If the amount of the jet affected is the same* as the quantity of air entrained, 
then from Equation (236) and (237) 

>v. ^ T ^-      -      % • ^e       ~ ^ ) 
/^  - >fe ^ (238) 

or 

—     • (239) 

We can also calculate the average momentum flux and static pressure (Afa   ) 
in the mixing zone, using the same approach. 

-SC^A^" ^ i>tr V ^       ^^      (240) 

4 j       =  g C^^- ^) . ^ (^-1^^;. (241) 

Averaging across the jet 

* Actually, for entrainment on one side of a jet, it can be shown that 
A"«^.   = 1.2vn, . , using the Rouse data. 
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The local static pressure is 

Thus, the arithmetric average in the region     ^/Q. ^ %.^ '"^ is 

(243) 

and ^| - A^ ^    ^      /   e -^   ^ J   . (244) 

Substituting these values in Equation (237)^ 

-C^C^^      (e^-U^ (245) 

e 

so that Equation (245) becomes 

0+«y^        ^'^a' <2',6, 

169 (^4^^). 



Also, in the region     <?^k   ^L SZ., 

~K, 

-vu 

(247) 

(248) 

Substituting in (046), 

AR- AP 

—C^-*^)^ ( -**&., 0.««+% 
) 

Note that the two viscous mixing terms tend to zero as 4£ /^r -r> Ö   . 

Within the order of accuracy of this analysis,   a further simplification is 
possible, by ^rtue of the fact that    O-'fe^A,,^    «   l-o . 

Thus, we can write 

e - 1 o tc 4>^ K 

(249) 

A^ 

-VR 

z,       • (250) 

For    <|> A^. ^  5.2 we use the normal equations for   ^    and   'w«-'j    which 
gives 
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% 
c-'*^ 

(251) 

where ^     * O 6Z.(<j>%    -I)'4" . (252) 

Note that in the limit     ^£   ->    O ^ 

A^      ^^       A^ _ ^      ^n^       _       C^ 

AK 
APj 

In practice the case of       ^"^t   ^    5.2 rarely occurs, since it implies 
■&/ >   10, approximately.   Thus Equation (250) is of most interest. 

This equation is plotted in Figure 89 for the case of    &   = 0°.    It is evident 
that the loss in cushion pressure is very large when no secondary vortex exists, 
so that the full static air friction drag acts on the primary vortex.    This ex- 
treme is unlikely in practice of course,  but on the other hand, the secondary 
vortex cam >t be expected to be luss-free so that the lower limit will not be ap- 
proached either. 

These limiting results are presented in Figure 90 in the conventional form of 
the cushion pressure ratio against height.    The experimental points are seen 
to fall below the limit for i^. ^ 2.0,   and it is thought that this deficiency 
probably represents diffusion losses in the nozzle, rather than a gross error 
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Figure 89.       Theoretical Loss in Cushion Pressure 
Caused by Viscous Mixing {Q  =0°). 
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In the viscous mixing theory.   Such diffusion losses are considered in the next 
chapter. 

THE STATIC PRESSURE IN THE PRIMARY VORTEX 

From Figure 88 the primary vortex pressure is 

r- rc- ^C (253) 

In general,    J; <  3^ t due to friction losses.   However, the air must flow 
back to the jet, so that we can never have the condition  3^  = 0.   At the present 
time, therefore, since we are necessarily ignorant of the exact value of the 
entrainraent function w^   and the distance over which entrainment occurs,   it 
seems sufficiently accurate to assume ^ s J^, and  Ö]   = 0 as the two extremes . 

since        jc - %3*    =   nL. .otaP (-^-^ -24^)i 

Ar] e   .     Oie f ; (254) 

^    I 

I     -   r,v \ 4.JE: ^^ (255) 
i - e 

where 0.16 is used when J| s 3^ , and half that value when tF^ = 0. 

Equation (255) is plotted in Figure 91 together with the available experimental 
data.   The nature of this particular measurement inevitably gives rise to a 
great deal of scatter unless the experiment is specially designed for it, and it 
is noteworthy that the two Hydronautics^ measurements, made during a pro- 
gram specially designed to study this effect, agree very well with the theory. 
The Aeronutronic data are very scattered, indicating the possibility of low ac- 
curacy, and the Iowa State data, while consistent, indicate   much lower values 
than the other two.   Thus a new   and quite detailed experimental investigation 
is evidently necessary before any firm conclusions can be drawn. 
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Chapter Seven 

A SMALL PERTURBATION THEORY OF DIFFUSION LOSSES IN AN 
ANNULAR JET NOZZLE 

V\\\\\\\\\\\\ 
NO DIFFUSION OCCURS 

£N THIS REGION 

T~7—/////    //// /  T  > ' /   / / /   / 

Figure 92.        Basic Geometry of Nozzle Diffusion, 

We come now to a second important source of loss;  that due to the diffusion 
which occurs on the inside of the nozzle as the local velocity slows from 

^/ to    ^X 

.^13 The existence of such a diffusion loss was postulated by Payne in 19Q4 " and 
was first measured in the present program.   It appears to be a significant 
source of energy loss at normal operating heights   but one which could easily 
escape experimental observation unless the experimenter was actually looking 
for it.   (In this regard the Chaplin annular jet rig used by Payne, Inc. is a very 
powerful tool, because of its excellent flow distribution in the nozzle ducting 
upstream of the nozzle proper   and because the pressure loss appears as a 
"gauge" reading .) 

The existence of diffusion in the nozzle is easy to understand, of course, be- 
cause the jet must balance the cushion pressure, which is necessarily higher 
than the static pressure in the nozzle.   Typical wall pressure distributions 
obtained with the Chaplin test rig are illustrated in Figures 93 and 94. 
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Figure 93.        Static Pressure Distribution on the 
Inside Nozzle Wall. 
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Figure 94.        Static Pressure Distribution on the 
Outside Nozzle Wall. 
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The present state of diffusion theory can hardly be regarded as satisfactory, 
of course.   However, the theory developed in Chapter Two enables us to ob- 
tain an estimate if we assume that diffusion takes place at constant static 
pressure. 

If iJ^ is the velocity of a filament in the nozzle, before diffusion starts, and 
-v* is the local velocity in the developed jet, then the total head loss &H is 
given by Equation (80) 

^ { -^N ■ Z7f / (256) 

where ^ A-     = static pressure in the nozzle duct upstream 
of the diffusion section 

äR        = total pressure at the same station. 

APPROXIMATE SOLUTION FOR A "STRAIGHT" NOZZLE 

In this section we assume a conventional straight nozzle and an "exponential" 
jet with an initially constant total head distribution. 

Thus AA ,        I   -  JZ . (257) 

The mass flow is given by 

r    (jT^V 

For simplicity, we define 

Since                -Ufc ^      (-&% 7^       ) 

^Vfe (258) 

(259) 
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(260) 

Also, since 

From Equations (260) and (261), 

4^ =      '     -    ^"■'V^R 
45 J 

# =  ' -   'A- (261, 

^ —^    • <262> 

Note that AH   =0 when 

>^   - ^r 
(263) 

(264) 

Equation (262) is plotted in Figure iK, for a tvnical case. 

This approach can be regarded as a "small uoiiurbation'  analysis, in that we 
neglect the change in -Oi     caused by the iuss m toti.l head.   A moie exact 
treatment would result in larger calculated I». -,es. 

MEAN TOTAL PRESSURE LOSS 

The mean total head change will be given by 

*p    *     A?   -  if, 4^ \ 

'   " -f^lf " ^e ^^  y^   (265) AP 
APj 
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£    - i - :^/>i -^-H'-^^O-A-**)]. 
JUPS v 

11 (266) 

The loss component of Equation (266) is plotted in Figure 96.   At a height 
corresponding to ■'*&. = 2.0 for example, there is a 5% loss in mean total 
head.   The actual cushion pressure loss will be somewhat greater than 5%, 
of course, because of the unfavorable Af^    gradient resulting, even though 
this is offset, to some extent, by the thickening of the jet.   It will also be 
greater by virtue of the "small perturbation" assumption, as noted earlier. 

It is interesting to note that the actual pressure loss measured in the Chaplin 
rig (Chapter Four) was 4%, instead of the theoretical figure of 2.5%. 

TOTAL POWER LOSS DUE TO DIFFUSION 

Power is defined as 

/A*. ^d . ^67) 

The power loss is 

We are interested only in that part of the jet in which diffusion occurs, of 
course. 

The power of this part is , 

I AtW -/^r'S- ■ 
}> 

The power of the remainder of the jet is 
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^ -A)3' - J^Pj^y 
(269) 

Tfaus^the total jet power is 

The power before diffusion is 

>PN - *P^«*' 
(271) 

This must equal the first integral of Equation (270), indicating that the jet 
thickness Az,:    is greater than the nozzle thickness.   In fact, for continuity 

Substitutin,! in (270) and dividing (270) by (271) 

A/ 

This is exactly the same as Equation (266). 

^/?'- ^^^V72» 
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Chapter Eight 

COANDA JET FLOW 

TV 
Figure 97.       Basic Geometry. 

From Equation (91), the equation governing Coanda flow can be taken as 
"free vortex" if the wall radius is constant; that is. 

5^ ^ 

/   for which the general solution is 

:*/£> [MZ^&uz   +kl 

(273) 

(274) 

when 

m 

185 

(275) 

(276) 



mm^sm^^^um 

SOLUTION FOR CONSTANT TOTAL HEAD 

When AR     = constant = AR*   , say, 

At the wall, therefore. 

A Pi 
■2^)   - <&A$ 

The local velocity is given by 

^-^ 

~ 

so that at the wall, the velocity is 

Since in parallel flow 

'   i> 

the velocity ratio 

'S/ 

(277) 

(278) 

(279) 

(280) 

(281) 
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This ratio is a measure of whether separation will occur when a straight sur- 
face follows a curved one, as in Figure £8. 

THICK JET 

DIFFUSION 
REGION 

Figure 98.       Separation of Coanda Flow. 

Even if the diffusion is distributed, by careful blending of the radius and the 
straight section, we must expect separation when ',v'w<ArH>2.0 (-/*7^r0 >   1.0). 
When the flat section is merely tangential, separation can be expected to occur 
at a lower value.   In all cases there will be some loss of jet total head, of 
course. 

Figure 99, derived from Equation (278) gives the wall static pressure as a 
function of the jet thickness ratio ^/^ .   In Reference 25 an experimental 
measurement is reported, in which a  1/8-inch jet,   at an initial (nozzle) 
Mach number A 0.68, is deflected by a curved surface of radius   2.5 inches. 
The surface pressure is an average of 

Apw 

W 
= -0.1 . 

The theoretical figure is, from Equation (278), 
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Figure 99.       Variation of Wall Pressure With the 
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^JV = -2 x . 05 - (. 05)2 

= -0.1025 .^ 

The agreement is therefore very good. 

APPROXIMATE SOLUTION FOR THE BOUNDARY LAYER EFFECT 

Let us define the loss of total head due to skin friction as 

3>f     - J%n-^<*i    '   fiWh (282) 

so that AI^        =      AFJ     -   ^Ol} (283) 

where   <pC^J    is understood to be finite and positive near the wall, but 
equal to z^ro over most of the jet.   Substituting (283) in Equation (276), 

.-a %\ifa^~'4^~ ffa^i (284) 

This is the same as Equation (277) when  ^    is large enough not to include the 
boundary layer.   When   "X = o ^ however, we have 

SW" SR,WJö<,      %Apy (285) 

where 3>F    ^    c^.^f^w1^ 
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That is. IV     ^    C^CAf* -   Afw). 

r* "  1       /(VVI3Cl!> ^^ 

-2P;   ,NV,5C'>     , (286) 
——nr"2qr*A<r 

This solution is only approximate, of course, but it does show how skin 
friction causes the wall static pressure to increase as the jet moves around 
the curved surface, and why the flow eventually separates. 

We can obviously solve the equations for the case of viscous entrainment on 
the outer surface of the jet.   In this case, AR    decreases with increasing 
path length ^- "■ ^0 , and the thickness M   increases.   There is probably 
little point in doing this unless we use a realistic velocity distribution for the 
jet, however, and the magnitude of the task then renders it inappropriate for 
the present program.   There does not seem to be any good reason why this 
approach should not adequately cover the Coanda flow problem, however, 
and enable both performance and stability to be predicted.   Needless to say, 
such predictive ability would be highly valuable, not only where Coanda flow 
is required, but also   where it is not desired. 

From Equation (279),the local velocity in a (free vortex) Coanda flow is 

^       r :v;:i (287) 

After diffusion, this reduces to 

'7) L ^  ^~ * "     'J    ) (288) 
<      ■     O (AfJ - MJ)3~ 

& H    being the total head loss, which is given by Equation (80). 

That is, *%P   -    0 "  ^)lC • "  ^iP.) ; (289) 

4H    '   Jge^C«  - 2£)1. (290, 
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—*mmm*   <      ■ '   •••*"——- 

Let    -a0 = ^C^ • ZIP , the nozzle dynamic head to ambient. 

Then x . ix    \,/fi-      -.«- ÄH    -  Jä r i   - (! - Av^p'^   ] 

Noting that   A^ *  ^    and (Z^öPf)* =  ^;; 

(291) 

(292) 

I - AH/^    is obviouRly similar to the conventional diffuser loss (I ~ Vp ). 

•• 27>-       2GIK      -    C^T'' =0, (293, 

(294) 

(295) 

This function is plotted in Figure 100. 

The average diffusion efficiency over the jet is therefore 

^* E/^-'«)T^ 

^ -^At'-i^)v]%. 
(296) 

(297) 
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As indicated in Figure 100, there is no solution when 

That is, ^zA)* 

or 

^ 

\ 
I.** >      2   Oc-^). 

This is most crit'cal at the wall ( "^ * 0 ^so that the requirement for a 
solution is 

1 -^4    ^    ^ 'o 

or ^.        <        0-4\4. (298) 

If we had used "small perturbation*4 theory, assuming that the total pressure 
loss did not reduce the velocity after diffusion, we should have obtained the 
result y^40   <   1.0 for a real solution.   Note that the Equation (298) 
"stability" limit corresponds to 

(   Tor) =-1-0' (299) 
Substituting Equation (287) in (297) 

^ = ^ e-^-feu1 -^tn%- (300) 

Let X     -     **** 
X ̂ \ 

Then ,.      s      ^-»/4r     ^   ^ 
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i ^J-'VL'-^J*-1* 
•'<t 

€ + t cvoh-^^^i^^ij- 
Now 

m 

**    '     l- 

»-v^ 

- i -i e^li + z*) 

It can be shown that   ft   -♦-   1.0 as >^<e-*- 0, as should be expected. 
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Chapter Nine 

TWO-DIMENSIONAL FLOW IN A CURVED DUCT 
WITH CONSTANT TOTAL HEAD 

The flow in a two-dimensional curved duct involves sudden diffusions when the 
curves are radii, tangential to straight ducts.   These can be treated by the 
diffusion theory :eveloped in Chapter Two. 

SUDDEN PRESSURE 
RISE ON THE 

OUTSIDE WALL 

\\\   ^   S 

\_ SUDDEN DIFFUSION AS STATIC 
PRESSURE RETURNS TO THE 
STRAIGHT DUCT VALUE 

PRESSURE DROPS 
ON THE INSIDE 

WALL 

Figure 101.      Flow Separation in a Curved Duct. 

The physical picture is illustrated in Figure 101.   In real (three-dimensional) 
ducts, the pressure differential across the bend generates secondary flows in 
the boundary layer of the side walls, and sometimes in the middle as well, and 
these secondary flows can mask the simple picture shown in Figure 101. 

In this chapter we confine our attention to the simplest possible case;  a duct of 
constant thickness, which corresponds to the free-vortex flow of an annular jet. 
There is no reason why the more sophisticated general theory should not be ap- 
plied, of course, provided that we remember to include the equation for con- 
tinuity; that is, to take account of the variation in mean velocity as the dis- 
tance between the walls varies.   This would enable us to solve problems of the 
type sketched in Figure 102 and to determine the optimum duct bend geometry 
for minimum loss. 

In addition, there is no need to limit the theory to the constant total head case 
of this paper, of course. 
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Figure 102.     Cases Solvable Using the General 
Theory Developed in This Investigation. 

STATIC PRESSURE AND VELOCITY DISTRIBUTION 

,N    V S   S   S    \    \ 

Figure 103.     Assumed Geometry. 
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a**) XA. 

The mass flow is 

•^w O 1 -^r-K ^ 

But if the duct width before the bend is also JZ t 

(303) 

From Equation (91) the local static pressure in the bend is given by 

&     -t    ^.äf. =      ^_ Aß   ; 

The local velocity is 

(304) 

CV^-Jli1   . 005) 

(306) 

(307) 
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Equating (306) and (307), 

■               K '    %    -     ^l ! I  ^P)    ^   .         (308, 

Substituting for K   in Equation (304) 

4P ■    (-"HJi^iT^iJ1 '  (309) 

which tends to      ^^Ap as     ^o  "* <30 • 

From Equation (305) j 

—3—\* * 1 0   v L!£flL^ , (310) 

or, since               -^ =      Ä^p ^j   _  Aj^p^ 

As   ^-*  ö 

2^, « ^/^o (311) 

^     —>.     _L-       —-   «o . 

The wall velocity values given by Equation (311) are plotted in Figure 104. 

THE CONSTANT VELOCITY STREAMLINE 

A streamline exists, near the center of the duct, along which there is no 
change in velocity; that is, -"^    "- "^ •   From Equation (311) this is given 
by * 
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(y^ 0    'S 

••    (%*\ s   M'\   ' ■       -i>    .    <312> 

In the limit   ^5^ -^   0 ^ 

as should be expected.   The general solution to (312) is plotted in Figure 105. 

MASS FLOW DISTRIBUTION AROUND THE BEND 

By integrating Equation (310) across the duct on either side of the constant 
velocity streamline we can obtain expressions for the mass flow on either 
side of the constant velocity streamline. 

^öure* ~      ^ fr* ^b-y^O  l^J (313) 

»v Tor**. ~       ~ T       T-^ 

These Equations are plotted in Figure 106. 

TOTAL HEAD LOSS ON THE OUTSIDE OF THE CONSTANT VELOCITY 
STREAMLINE 

From Equation (80) the total head loss in a constant pressure diffusion is 

(314) 

(315) 
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Figure 105.      Position of the Constant Velocity Streamline. 
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Since    A^n "£&) = -^o, this is more conveniently caressed as 

"2- 

^L '      C^  -    ^ ^   • (316) 

Substituting Equation (311),the mean loss is 

^0^)       ^g^Q^fa^felT) 

TOTAL HEAD LOSS ON THE INSIDE OF THE CONSTANT VELOCITY 
STREAMLINE " "       ^ 

For this case, Equation (315) becomes 

But 

(319) 
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(320) 

•' ^« ^    3»A J0   L(n Mty^o^j)    J    h* 

MEAN TOTAL PRESSURE LOSS ACROSS THE DUCT 

Summing Equations (317) and (320) across the entire duct 

(f AH \        ~~      J^S  , . (321) 

Equation (321) is plotted in Figure 107. 

THE LOSS INCREMENT DUE TO SKIN FRICTION 

We can obtain an approximate figure for the total head loss due to skin friction 
from the relationship 

^AH
SF  * c?[&■*.**<. * hde(■*.'Ao'] 

(322) 

AH 

- 0cf.-k. [< + T^^M^^^Of. 
-z 

(324) 

^, o -. 
This result is overplotted in Figure 107 for 0   = 90   and   Ot = . 004. 
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COMPARISON WITH EXPERIMENT 

The writers of this report are not aware of any two-dimensional flow meas- 
urements of curved duct losses, so that direct comparison with experiment 
is impossible.   Reference 26 presents data for rectangular ducts of various 
finite aspect ratios and, as shown in Figure 108, these results fair into the 
two-dimensional solution very convincingly.   However, an appropriately 
planned experimental program is essential before the basic hypothesis used 
in the foregoing analysis can be substantiated.   Such a program would then 
permit embarkment upon the analysis of the secondary flows in the three- 
dimensional case. 

It is perhaps worth pointing out that extensions of the present analysis to the 
more general case offer hope of defining duct bend shapes for minimum loss. 
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Chapter Ten 

FLOW INTO A TWO-DIMENSIONAL FLUSH INTAKE 

XV^ 

yi-- 
(a)  Actual intake flow. 

^N 

Figure 109.      Flow Into a Flush Intake. 

An intake which i. at right angles to the free-stream velocity is often highly 
desirable from a practical weight and size point of view, but is difficult to 
design for high intake efficiency.   This is mainly because of the flow break- 
away which occurs on the leading edge of such an intake, as indicated in 
Figure 109(a), in contrast to the hoped-for inviscid flow picture of Figure 
109(b).   Even the latter would present problems, however, in that the 
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velocity would vary across the plane of the intake. 

In this chapter we attempt to lay the foundations for the analysis of such flows, 
using the same basic approaches that have proven successful for curved jet 
flows.   The subject is complicated by the important effect of the upstream 
boundary layer, and by separation due to sudden diffusion on the intake lip. 
Thus, although we shall develop the theory far enough to obtain closed form 
solutions, we will not attempt to "fill in" all the details, this being beyond 
the scope of the present program.   Sufficient work has been done to indicate 
that this approach should yield good results, however, and to show that its use 
will improve our predictive abiliiy    To cite c ly two examples, it is found 
that the "momentum drag" is not equal to the product of the free stream velocity 
and the intake mass flow, and that the efficiency of a horizontal intake will de- 
crease as the free-stream velocity increases, due to leading edge diffusion. 
Both these points might be of importance to a vehicle such as the XV-4A, for 
example. 

^o — 

LOW SPEED r^^/) 

Figure 110.      Flow Into a Flush Intake. 
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Two-dimensional flow into a flush intake must of necessity adhere to the body 
surface upstream of the intake, as illustrated in Figure 110.   Thus, if the ex- 
ternal flow is undefined,so that the surface pressure distribution is unknown, 
we are unable to calculate the effects due to the tilt angle.   For small angles 
these effects will presumably be of second order, however. 

The flow illustrated in Figure 110 must satisfy the equation of curvilinear 
flow.   That is, 

^t     -f    ~Z~AK       =     -^ AR. (325) 
£i      -**' <ly        -^ 7>   > 

The curvature gradient  ^    will depend upon the intake velocity ratio 
( xlÄ-i^^u,^      ), as indicated in Figure 110, the flow direction being reversed 
from the conventional annular jet direction.   If we retain the annular jet as- 
sumption of constant boundary radius, then solutions can be obtained in the 
same way as in the earlier chapters.   It is possible that the constant radius 
assumption is an unnecessary restriction, however, and that the results can 
be made more general in future work. 

Additionally, the   free-vortex   and   exponential theory   approximations are 
still of value; the firstjs applicable in the region ^t/tu.. •^Jsll. 0, and the 
second is correct as 'AX-^/^    -»> o  •   Yox M-S     >     1.0, the general 
theory must be used. 

MOMENTUM EQUATIONS 

The geometry shown in Figure 110 assumes that a straight-walled duct follows 
the radiused inlet.   Thus the line A-A theoretically makes a discontinuity at 
which the static pressure field changes, being some function of  5.     above 
A-A and uniform below.   In practice, the boundary layer will thicken on the 
upstream wall, of course, in such a way as to avoid this discontinuity.   In 
fact, if the velocity at the   %    surface significantly exceeds the mean duct 
velocity, flow separation will occur at the point where the    ^   radius is 
tangential to the duct. 

Noting this reservation, the horizontal momentum balance for V ^ o    gives 

/    fV«^ =       *aC^*    -^O- (326) 
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If 

then 

(327) 

^ '       '^     4^#'' ^ 

Since 

If we were to base the calculation of   rf      on continuity of mass flow, then 

/7       *     ^.    , (330) 
yU~ 

This is not the same as Equation (329). Thus y differs depending on 
whether we assume conservation of momentum or mass flow. We do not 
know at the present time which is the more correct. 

THE FLOW EQUATION FOR CONSTANT TOTAL HEAD 

The total head distribution   -AHw      may be considered constant and equal to 
( Afcf'ULo     ) ^ ^e upstream boundary layer is of negligible thickness.   The 
solution to (325) is therefore 
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^o*7V     "^ ^f«Ccn ^73)^ (332) 

^f V KfK   k+o+lll (333) 

/^f^C V J$,t"Z   Ä +* * t*)      ' (334) 

INTAKE MASS FLOW 

The local velocity Is 

- c — ^tc e-J'- 
Thus the elemental mass flow is 

(335) 

^    ^     ^ 
^    ^   f>^^   - r>-^o(."|^)(^; 73- 

(336) 

7 ^ 1 i^-o -^ y^rp^r-, ], (337) 
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/^>( appears as an arbitrary constant because the mass flow is arbitrary, so 
far as the intake is concerned. The actual value of '*»*,, depends upon the de- 
pression existing in the intake, due to the fan or other air-moving device. 

Writing . ""^ß-      ^    p/t/^i ; 

Substitution of this in Equation (333) gives the static pressure distribution in 
terms of ^     and (   SJ-\/AK6 ) only, the latter being easily eliminated 
(Equation 330) for the case of conservation of mass flow. 

THE FLOW CURVATURE PARAMETER  ^    FOR CONSERVATION OF 
MOMENTUM 

From Equation (334) 

^ 

(340) 

• (341) 

Equating this to    «^/^r        , as in Equation (329)(the conservation of 
momentum criterion) 

m 
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This is explicit in the sense that defining «7     ana   "'•^e:     automatically de- 
fines the intake velocity ratio (   /*»., Ac^     ). 

Since we cannot expect to have K>oO   or   ^^^ , these limits define the 
real range of VO    values.   In the latter case,  vo   = 0, of course, while for 

oo . 

The conservation of mass flow relationship for ^j   is given by Equation (330). 
This is compared with Equation (347) in Figure 111, and the^difference be- 
tween the two is seen to be appreciable for low values of /**>% /cc0     .   This 
may be interpreted as indicating a limitation of the constant flow radius as- 
sumption, or that the differential pressures A-J»,   and Ay^t  act over a greater 
depth than the assumed value of "^   .   The latter is felt to be most probable 
at the present time; but in the work which follows we derive solutions for the 
conservation of momentum case only, since the conservation of mass flow 
solutions turn out to be the same, except for the relationship between   |9   and 

THE STATIC PRESSURE DISTRIBUTION     A>f>» 

From Equations (334) and (339)^ 

^b- =1-22    (d^,\ ^ . (343) 

Note that the intake velocity ratio does not appear explicitly. 

From Equation (335) this gives 

^      -". ^.     -vw-     ,^/c \^/    (344) 

(_*      ti^+iV ] 
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LIMIT SOLUTIONS FOR      </* O ,    ^*& = CONSTANT. 

From the exponential theory solutions of Chapter Four 

The local velocity is therefore 

and the intake mass flow is 
*2.    f 

^•C'- I^X'-- 3- 

Since -^ -      f ^^ ^-, > 

t/fZ 

216 

(346) 

^ '    l  -^-^c     "• <-, 

(348) 

fT^^^ ^ * (349) 

—^■'^   )    = —'' ^£P&        ' (350) 



Substituting in the static pressure and velocity equations, 

KEe>< V ^a ^ v R/   -    -   ^^i^ <351) 

-=? "^ *   ST 7 =^fe " '     (352) 

It is of interest to note that the local velocity ratio "^f ^MA,   is independent 
of the flow ratio ('**-t/u,0  )•   The function C^j^^L  ) is plotted in Figure 112. 

SOLUTIONS FOR   »7«   l-Q^   ^^-   = CONSTANT 

The   free-vortex   solutions of Chapter Four give 

Jit~i *^ (353) 

When ^.  ^   O ^       Af^   *     -A^    ^ 

-^P-^ ^t^V     > 

(354) 

The local velocity is therefore 

Hr_t- (355) 
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Thus,the mass flow is 

4 f>^.o-^W^^.i 
(356) 

■•^-|^f      =   c^X^/-0. (357) 

Substituting this in the static pressure and velocity equations, 

^ u^v[^(.-^)j"     (358) 

^ "       ^.   ^       -   ^^^-/   ^    ^^_-        .    (359) 

Once again the velocity ratio '^\/ULi is independent of ( ,•**■•/^»T,     )•   Equation 
(359) is plotted in Figure 113. 

THE FLOW EQUATION WITH AN UPSTREAM BOUNDARY LAYER 

When the upstream boundary layer is significant, in relation to the size of the 
intake, the total head distribution in the on-coming flow cannot be regarded as 
constant.   Thus, Equation (331) now has the integral 

J%* -7*?'^ ^ (36o) 

instead of / (+* + ny ^-v 
(361) 
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In addition, the value of the curvature parameter { *f    ) will be larger, from 
Equation (329). 

The appearance of &K   in the integral means that it must be analytic 
( At?  -"ftyj   )f so that we have to make appropriate idealizations for 
^(a  ).   There is nothing particularly difficult about this; we have already 
accomplished it for jet flows, but the reduction to numerical results is time- 
consuming, and is not within the terms of reference at the present program. 

SOLUTION FOR A THIN UPSTREAM BOUNDARY LAYER 

We may write 4R       =     -| f ^«    "*   &£%) (362) 

where    <^ C^)   = 0 over most of the intake, but is finite when 5"* 0 •   The 

general solution to Equation (325) then becomes 

(363) 

Now, since  ^C^)   is only finite when      "^ "■*"    0> 

Note that this approximation improves as the boundary layer gets thinner, 
•^   gets larger, or v7    approaches 2.0 or zero. 

Now at constant static pressure there is a simple relationship between the 
skin friction drag and the boundary layer momentum. 

(364) 

Jf 
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and writing    A«o  as'5|f'*A. ■ this becomes 

^/l^-^^^^j^- C "    "    ' "  "    "   ^ "'    '   ~' '     '^    ^" ■   ■     " ' (365) 

(366) 

Thus, Equation (363) becomes 

When ^ '   0   ;    ^''i    *     '4'','   ' 

rp-**o ir-** -^f^» if-*** 

^   .    ..    .^     ^     o^/.V^    ^ 

" (367) 

Thus the square bracket replaces (   I  ~"    ^Vf-uJ") in the previous constant 
total head analysis, and the rest of the reasoning can be followed as before. 
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MOMENTUM DRAG 

The momentum of the free-stream air swallowed by the intake is initially 

i 
Now /     o -. öLvi     *    -v*. • 

Thus, the momentum drag can be written as 
R 

•=        >-««^» -^'o    * (368) 

This is quite different from the traditional value j**»'**'*    , particularly if the 
intake is mounted some way back from the leading edge of a body   or if there 
is any drag-producing structure (such as a sharply radiused leading edge) in 
front of it, whereby the mean velocity ^L0    is reduced.   Even without drag 
effects, however, distortion of the velocity profile by the presence of the body 
will result in X   differing from unity, and hence changing the momentum drag. 
It is easy to see from the studies of X     in Chapter Two that this could influence 
the momentum drag by a factor of two in certain cases.   Thus the reported mo- 
mentum drag anomalies  may be nothing more than the use of an inapplicable 
analysis. 

SOME EXPERIMENTAL MEASUREMENTS 

The efficiency of a ram intake is usually stated as the ram pressure recovery 
ratio ( üf^ ). The flow is approximately one-dimensional; therefore the total 
pressure in the intake may be written as 

7,     -    ^-^ .^ 
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A* +     (".) 
>tT" o 

V ^:o   / (369) 

\^iere **^J  is the mean static pressure rise relative to ambient and /<tj is the 
mean velocity in the intake. 

Intake Power Efficiency 

For a flush intake the ram pressure recovery ratio does not have precise 
meaning.   Instead, as a measure of efficiency we consider the power content 
of the swallowed air in relation to its power at free stream velocity.   Power 
over an area A is given by 

?       -     f AP.^+b 
(370) 

and we define the efficiency as 

where i»^   is the mass flow into the intake. 

That is, 

Yl   ~        Duct airflow power above ambient   m 

' Duct airflow power with no loss 

If  Zj-t.   is constant over the duct area A, Equation (372) becomes 

(372) 

^f^< 
(373) 

•     o 

and if AX-t  is constant also, Equation (373) reduces to Equation (369).   Thus, 
the iniake power efficiency and the ram pressure recovery ratio are identical 
under these conditions.   However, the power efficiency has the advantage of 
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having an exact meaning, both in this special case and generally. 

At low value of the free-stream velocity (/u.# -♦ 0), the efficiency has a large 
negative value since AP|   will become negative when the free-stream total head 
is insufficient to compensate for losses in the duct. 

Experimental Measurement of Intake Power Efficiency 

As a simple experiment to establish the power efficiency for a two-dimensional 
flow, an intake was constructed in the floor of the Eiffel tunnel at Payne,  Inc. 
The aperture was connected by a short length of ducting to an antechamber ex- 
hausted by the intake of a centrifugal blower. The general arrangement and di- 
mensions are shown in Figures 114 and 115.    The air flow was examined by 
means of total and static pressure measurements at the throat of the intake, at 
the mouth of the intake, and at points near the tunnel floor upstream of the in- 
take. Additionally, the direction of the flow at the intake mouth was established. 

These measurements were made with a directional probe. This instrument 
does not sense static pressure directly, and a calibration was necessary to 
obtain static pressure data. 

Calibration of Yaw Probe, for Static Pressure Measurement 

The sensing head of the yaw probe is cylindrical, 0.120-inch diameter, with 
three pressure tappings at anf'es approximately -30°, 0°, +30° to the refer- 
ence direction.   The method of use consists of rotating the probe about its 
axis until the pressures in the side tappings are equal.   The center tap (and 
reference direction) is then in line with the flow and senses the total pressure 
of the flow. 

The pressure around a cylinder in incompressible flow is given by 

>fcr s -fe       4        ^p.^eV (374) 

where Cp    is a coefficient depending only on angular position around the 
cylinder with respect to the flow direction.    For the probe as used, the angu- 
lar position of the taps is constant and therefore   Cp  is constant.   Thus, the 
common pressure in the side taps is given by 
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! -   cP   ^    -N^H^   ^ (375) 

>wp was determined by setting up the probe in the main tunnel flow and 
measuring    ^ - ^ ^   ^ _   ^ # 

The actual values were 

CZ^        -    —   O-CZ  , (376) 

In general 

- o0.P 

(377) 

and /^r^        =     - o-ttz-c-f,- ^  . (378) 

In the tunnel experiments , ^H       of Equation (371) is^ith respect to the 
tunnel static pressure ( ^"fco),  representing the total pressure above am- 
bient sensed in the intake with forward motion   'vc0      .   Thus,   if AP     is 
the measured total pressure with respect to room static > 
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Therefore.the expression for   ''7    becomes 

■x. 

7 T 
y -^f^^, «£*. ^ y^R«., «^t 

>^.^yü^ 

\ -V-        --T—».    / ^P-^-i   ^"^  • (380) 

Since   ZJ P    is essentially negative • »^^"-^s«*^- represents t'ne power lo«?t 
in the intake flow, and the term fc^ JA AR«,,«l«c may be called the power loss 
factor of the intake.   Obviously as the tunnel speed is reduced the power loss 
factor becomes increasingly negative and leads to negative values of   »^   . 
The experimental data are given on Figures 116, 117 and 118, showing the 
pressure and velocity distributions at the mouth and throat of the intake.   The 
power loss factor was computed from the throat measurements. 

Here the values were as follows: 

/'* 2 
Volume flow J -«H'«** = 16.0 ft / second 
Mass flow        m,  - /t/^«** = 0. 0373 slug/second/ft 
Power loss /*%Pu.<<*. = 37. 7 ft lb/second/ft 
Free stream power  -g*^«&    = 151 ft lb/second/ft 
Turnel speed -u^,       = 90.0 ft/second 
Power loss factor       '" ^    = 0. 25 
Intake power efficiency M       = 0. 75 

Comparison with Theoretical Values 

The velocity distribution in this intake mouth has been calculated by the 
methods of the previous section and is shown in Figures 119, 120 and 121. 

In Figure 122 the experimental plot of the velocity normal to the intake plane is 
compared with the theoretical curve.   The lack of agreement near the upstream 
wall is compared in Figure 123 with the velocity profile in the boundary layer 
in the tunnel 1 inch upstream of the start of the intake radius^and Figure 124 
shows the total pressure gradient.   The nominal thickness (where the velocity 
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is 0. 95 of the tunnel speed) is 0.14 inches and thus must be considered thick in 
proportion to the dimensions of the intake.   The theoretical curve is thus not ap- 
plicable close to the boundaries, and the flow in the center should be increased to 
represent the practical case.   This is sufficient to show the importance of the 
boundary layer in distributing intake flow. 

The spanwise distribution of velocity across the duct (Figure 125) is fairly uni- 
form and the approximation to two-dimensional flow seems reasonably close. 

Comparison With Zero Tunnel Speed Case 

The velocity profile at the intake case for zero forward speed is shown in Figure 
126 with the case from Figure 123 superimposed for comparison. 

These show that the mass flows are almost identical, indicating that the amount 
of air swallowed by the intake is independent of forward speed. In the zero speed 
case the boundary layer is of course quite thin, being developed only over the 
length of the intake itself. 
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Figure 124.      Total Pressure in Upstream Boundary Layer. 
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Chapter Eleven 

SOME GENERAL PROBLEMS OF A JET 
DISCHARGING ACROSS A FREE-STREAM FLOW 

THRUST LOSS DUE TO MIXING 

It was shown in Reference 3 that if a jet of mass flow ('»•'Ly ) mixes with an 
additional quantity of fluid (^my ) at a mixing static pressure    A-f»,    , the 
augmentation is 

Cj>     r       ^ _   Total momentum flux to ambient  
Jet momentum flux to the pressure A-f*, 

£o^)Vf,,   ^   ^C'-^^-^^s,)2 J (381) 

where 
TV    is the entrained fluid ratio. 

•**«    =   primary jet velocity at the pressure A^>, 
^D     

=   (dynamic head) efficiency of diffusion to ambient 
'0*l     =   velocity of secondary fluid before mixing. 

This equation is quite general for incompressible flow;  present indications are 
that compressibility effects are negligible so long as ^t,   is subsonic. 

When a jet is exhausted across a free-stream flow, the static pressure distri- 
bution in the region of the nozzle is quite complex.   Generally it is greater than 
ambient in the forward portion of the jet (  A-jS)x     in Figure 23 for example) so 
that A-fi    is positive in Equation (381). 

Close to the nozzle/we may take the relative static pressure as the free-stream 
dynamic head A^ f "^     on the high pressure side of the jet.   On the rear side 
of the jet the static pressure will be ambient, or somewhat lower.   Thus, the 
mean effective jet static pressure will be between these two extremes   and 
will, in fact, be the arithmetric mean if the jet is thin in relation to its local 
radius of curvature.   Thus, approximately 
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Af»,     -   Aft     =    H.(>i*< ); 

Aft     "   ^(^.T 
and 5 =     L^C^-O^r    "*-   »     I"1. <382> 

TMs  equation does not account for the momentum lost by the air which is en- 
trained by the jet,  a drag force which is obviously   -vt.-m,^     .   When this is 
included 

r 3k 1   = uo-o'fö f + if- -w^. L   •><>   K~ l ^ J X:, (383) 

Note that as     'vO/^   —*"  0 > 

^..o (384) 

As 

it. 

[?:]„,-fi^-']' 
which describes the effect of the pressure energy in the jet. 

(385) 

Equation (383) is plotted in Figure 127, where we see that, if the entrained 
air ratio (iv ) is large enough, the thrust recovery can be negative.   The ap- 
parent thrust recovery can exceed unity only for very small values of "H- , and 
this is due only to the neglect of the pressure thrust term in the analysis. 

It is not the primary purpose of this report to discuss jet drag, so that we shall 
not study the vari:.aon of (it ) with 'A*o/yr   , beyond remarking that we can 
obviously accomplish this, using the results of the section on jet characteristics. 

It seems that this mixing is the primary reason for the loss of propulsive thrust 
which occurs when a jet flap is deflected through a large angle.   For complete- 
ness, however, we shall now review the other possible reasons for the "thrust 
anomaly". 
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When a jet of mass flow ( ^vj ) emerges from a body with a uniform velocity 
^vw0 f we anticipate a thrust equal to the product ( -^.AJL^ ). This follows 
from Newton's law that force is equal to the rate of change of momentum; that 
is. 

öUr «cc 

the second derivative being zero in steady flow. 

More precisely, if x<-#"   is the local velocity in the jet exit plane, and Ztyj 
the local static pressure measured relative to ambient 

A, - A/ 
r   x f      «- uAj , 

(386) 

a relationship which can be applied to two- or three-dimensional flow. 

SOURCES OF APPARENT JET DRAG COMMON TO ALL JET CONFIGURATIONS 

The nozzle static pressure is usually assumed to be equal to ambient and this is 
usually a safe assumption for static conditions if it is well designed, and of con- 
stant section.   If vena contracta occurs, however, or the nozzle is either con- 
vergent or divergent, then this assumption is invalid.  / SFpARATED FLOW 

(a)   Nozzles for Which the Exit Plane Static Pressure 
is Essentially Ambient. 

(b)  Nozzles for Which the Exit Static Pressure is Greater 
Than Ambient. 

Figure 128.      Some Effects of Nozzle Shape on the Discharge 
Coefficient Under Static Conditions. 

243 



This obviously presents difficulties.   In some experimental work with GEMs 
for example, it has been the practice to measure the supply air mass flow. 
The velocity is then obtained by dividing by the jet area   Ay and nozzle force 
calculated from the expression 

F~ (387) 

If appreciable contraction occurs as the jet leaves the nozzle, such a calcula- 
tion could be as much as 40% in error, of course. 

Thus, a first cause of jet drag can be a simple error in estimating the jet 
force. If the assumed value is fjj^ , and if the true value is f-j- , the ap- 
parent drag will be f - Fr    , giving a drag coefficient increment. 

^ 

= 2(4;XM^)T<-^). (388) 

The Effect of Pressure Due to Free-Stream Flow 

Major difficulties arise when the jet issues from a body immersed in a free 
stream flow, since the pressure term in Equation (387) is not now equal to 
ambient. 

Figure 129.      Jet Issuing From a Body in Inviscid Flow. 
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Consider the idealized case of a jet issuing from the rear of a body in inviscid 
flow, for example, as shown in Figure 129.   If the total head of the jet is known 
(   AP, say).then its velocity is known from the relationship 

AJ^- ~       [f C4Pi   - ^f i )   J    • (389) 

Now the static pressure at the jet exit for a thin jet   will be equal to the free- 
stream total head, provided that the rear is rounded.    That is, 

A*;       =      ^ ^< 

For a nozzle thickness of (^t ), the jet mass flow will be 

391) 

k 

From Equation (387) the jet force will be 

The normal thrust ("Hij **-/ )N    is the force of the jet when exhausting to 
ambient static pressure.   That is, 

From Equation (390) 

(392) 
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^S1CJ)N ^ 
(394) 

AR 

The apparent  jet drag is 

'•       ^ 
Ob 

s-    0 (395) 

This very simple result is perhaps what we would have intuitively suspected. 
By removing a small area (CZt ) of the body in order to permit a jet to emerge, 
we have reduced the forward acting pressure force on the body by     Ct .J-PJU^ 

and replaced it by an equivalent jet pressure term. 

The jet mass flow reduces with increasing ^^-o    for constant jet total pressure. 
From Equation (391) 

2±L    ~   cte Cf ^ --:) 

(i _ . 
1    x'/z- 

A^-    ^ (396) 

C' + tzff J"% •        (397, 

For the case of known ( >*•,'   ) rather than constant ( ^Y ) we can calculate 
the apparent jet drag as follows: 
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From (394) 

*>.   = c:^. -^f^s.   + ^f-^ 

(S *-iX' ^^f-T J 

%   • 
FN 

=   »    - ^(^; 

■ 

•   * J); =   -Of^ ^(-^/^ 

- • C>; 
^    - cut 

——    » s 

(398) 

(399) 

a result identical to Equation (395) but of opposite sign. 

In the case of ? body whose rear surface (at the ^_ ) is not normal to the free 
stream flow, the local pressure is K- 'tif'**-«     , where K •<- 1.0 for a local 
angle of less than 90°.   Equations (395) and (399) are then modified in that they 
are multiplied by the constant K. 

The Effect of "Boundary Layer Pumping" 

1—* -*; 

T2mM££ 
.•\ 

Figure 130.      Boundary Layer Entrainment in a Jet. 

In a real (viscous) fluid, when a jet issues from the rear of a wing or body, or 
from anywhere except the leading edge, for that matter, it must entrain a 
boundary layer which has an average velocity lower than free-stream velocity. 

Let us suppose that the boundary layer velocity (^u., ) is some arbitrary function 
of'S and that the body is slender enough for all static pressures to be essen- 
tiany ambient. 
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The equations governing the force on the symmetrical body are then 

Force 
free-st ream momentum 
downstream of body 

(jet momentum flux) -  free-stream momentum 
upstream oi body 

zi ^^  + zl r^ ~ zj&'t  (400) 
w 

&- 

=   C^j/^i) - l^^cje^i <*} - z/cty j * (4oi) 

The skin friction force must be equal to the change in momentum flux of the 
boundary layer.     That is, 

^       =     Z~°Je-~. ^    -     ^JJ-'-i (402, 
el 

Total force     *      ""^^l     —   ^sF, 

Thus,when the mixing zone static pressure is ambient, there is no jet-induced 
effect on the skin friction drag of a slender body. 

Jet-Induced Turbulence 

If the rear of the wing or body from which a jet issues is of such a shape that 
the free-stream air cannot negotiate it without separation, then operation of the 
jet can result in a larger wake than for the "jet off" condition as indicated in 
Figure 131.   Hence even if the final jet momentum flux is the same as at the 
nozzle, the total drag will increase, as a direct result of the presence of the 
jet. 
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(ammmim 

(a)  Jet Off. WAKE 

(b)  Jet On 

Figure 131.     Jet Influence on a Wake. 

By analogy with a flat plate we should expect this drag to be of the form 

'3>i (403) 

\0 . This effect has been observed on an elliptical aerofoil with a 90   jet flap, in 
the two-dimensional tunnel, as reported in the introduction to this report. 

Nozzle Diffusion Losses 

An oblique jet in a free stream implies that a pressure differential is gener- 
ated across it.   In fact, near the nozzle, the pressure differential across a 
90° jet can be greater than the free-stream dynamic head. 
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DIFFUSION 
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(a)  No Diffusion When Jet has 
no Static Pressure Gradient 
Across It. 

(b)  Jet Issuing into a Static 
Pressure Gradient Under- 
goes Rapid Diffusion on the 
High- Pressure Side. 

Figure 132.      Nozzle Diffusion Losses. 

This implies that the jet flow on '.he high-pressure side of the nozzle suffers 
a sudden increase in static pressure, causing losses which are analogous to 
the Borda-Carnot "sudden diffusion" loss discussed earlier.   For a known 
geometry this can obviously be evaluated by the use of Equation («0). 

A SIMPLE HYPOTHESIS FOR JET PRESSURE IN A FREE-STREAM FLOW 

Figure 133.      Jet Flap in Inviscid Flow. 
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The problem of the shape of a jet flap in inviscid flow is theoretically solvable, 
even though the path of the jet depends upon the external flow field, which in 
turn depends upon the path of the jet.   We could, for example, use a potential 
tank analog to obtain a solution.   However, a closed-form analytic solution 
would be extremely difficult, if not impossible, to obtain. 

When dealing with viscous fluids, we know that the total head in the jet falls 
rapidly as it moves away from the nozzle, due to entrainment.   This does not 
necessarily imply that the jet sheet will have a greater curvature (giving re- 
duced circulation on the wing) however, because the total jet momentum flux is 
still conserved at constant static pressure.   However, the problem is obviously 
even more complex than for inviscid flow, and in view of our ignorance on the 
subject A entrainment coefficients, we may well ask whether attempts to obtain 
such solutions are justifiable. 

Figure 134. Smoke l\mnel Flow Observations 
of a Jet Flap. 

Smoke tunnel observations of the flow around a jet flap indicate that the free 
streamlines "enter" the jet, almost without changing their direction (Figure 
134).   Certainly the flow picture seems quite different from the theoretical pic- 
ture of Figure 133.   This then introduces the possibility of an attractive mathe- 
matical simplification analogous to the^A-o00* & hypothesis for swept-back 
wings and the Newtonian theory of hypersonic gas dynamics. 
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<M 

Figure 135.     Local Jet Geometry. 

From Figure 135 the appropriate assumption is 

Is*** *e> (404) 

The change in momentum flux, normal to the initial direction, is evidently 
OfcT , so that the balance of pressure and momentum forces gives 

or -r •f c<ro*& (405) 

In other words, the product (-fO»19 ) is a constant.   Because the center of 
curvature changes continuously along the curve, this seemingly simple equa- 
tion is difficult to transform to Cartesian coordinates.   However, it can be 
plotted out graphically. 

We note that 

And since 

/fc*^ ^ 

JU~® 

(406) 

e 0- c«» •ef. 
c^a & 
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~ & 1-4- /fc)     * (407) 

Then from (404) the local pressure is 

ii+      * _^     ^ (408) 

Thus for any jet shape, M «= T-'^, the horizontal pressure force component is 

^*- 

^ 

/AH^ 

(409) 

so that the total pressure force is 

where ^ is the maximum deflection the -^/   direction. 

For an elliptical jet path, for example, 

Z- ^^ (411) 

-9C «      f  ^-^^^ 
(412) 
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which reduces to 

•A^     ^   ^fc^A'Jf, +   -<-]-    _L_   .   (413) 

This function is plotted in Figure 136.   Note that we have not attempted to 
determine the static pressure A^  behind the jet in this analysis. 

SOME EXPERIMENTAL OBSERVATIONS 

The behavior of a jet discharging normally into a free-stream air flow was 
examined using the flush intake in the floor of our two-dimensional tunnel 
with the air supply from a centrifugal blower discharging into the tunnel 
flow (Figure 137). 

Total and static pressures were measured at three stations: 

(1) Jet throat. 
(2) Jet outlet to tunnel. 
(3) Outlet from tunnel working section. 

In addition, the static pressures at the tunnel wall at the working section 
entry and exit were measured. 

The experiment was conducted at three different strengths of jet.   Because 
of the interference with the free-stream flow, the free-stream velocity changed 
with the jet velocity.   This is seen most clearly by considering the volume 
flow leaving through the tunnel driving fan with the jet at its various values. 

Flows in Square Feet Per Second 

Tunnel outflow 159 155 104.5 79.3 

Jet inflow 0 8 12 20 

Tunnel inflow 159 147 92.5 59.3 

Velocities in Feet Per Second 

Mean free-stream velocity 79.5 73 46.2 29.6 
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Mean jet velocity 0 41 62 103 

Velocity ratio, jet/ 
free stream 

0 0.56 1.34 2.88 

All the measurements (except tunnel wall static pressures) were taken with the 
directional yaw probe described in a previous chapter, in conjunction with in- 
clined manometers.   Under set conditions, pressures were steady and repeat- 
able.   The data are plotted in Figures 137-143 without any smoothing or select- 
ive omission and the quality is such as to indicate a low incidence of random 
error. 
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Figure 139(a). Velocity and Pressure Distribution at Mouth 
of Jet.   (Jet/Free-Stream Velocity Ratio 0.56). 
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Figure 139(b). Velocity and Pressure Distribution in Jet 
Throat.   (Jet/Free-Stream Velocity Ratio 0.56) 
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Figure 141(a). Velocity and Pressure Distribution at 
Mouth of Jet.   (Jet/Free-Stream Velocity 
Ratio   1.34). 
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RECOMMENDATIONS FOR FURTHER WORK 

The program herein reported is rather diffuse in that, although the basic sub- 
ject is the equation for curvilinear flow, we have applied it to a number of 
practical applications. It could not, of course, be rigorously applied to all 
cases; therefore, most attention has been concentrated on the annular jet 
problem, since we were most familiar with this and since the annular jet 
problem posses ;es the greatest body of previous work, both theoretical and 
experimental. 

As a result, it is believed that no further work is required in this area, except 
for the tidying up of loose ends.   However, considerably more work remains to 
be done with intake flow and curved-duct flow;  such an effort is important be- 
cause of the substantial reduction in losses which may be obtained. 

Annular Jet Theory 

The new kiviscid theory appears to be completely satisfactory, as far as it 
goes.   In order to make the theory of maximum practical utility, it is recom- 
mended that a program be formalized in the following steps: 

(a) Solve the in viscid flow annular jet equations for 
constant total pressure on a digital computer, 
and both tabulate and plot the results in conveni- 
ent form.   The slide rule computations made for 
this report are unsatisfactory for general engi- 
neering use. 

(b) Repeat the above calculations for a range of 
linear total pressure variations across the jet. 

(c) Program the equations for the case of an arbi- 
trary total pressure distribution across the jet, 
and include both viscous mixing and diffusion 
pressure loss effects.   Such a program, fully 
checked out and generally available, would con- 
stitute a valuable engineering design tool. 

(d) Develop an optimum nozzle shape for minimum 
total pressure loss.   The simple experiment 
reported in Appendix IV of this report shows 
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that even a very simple "pre-curving" of the 
flow gives a dramatic reduction in loss,   and 
it is believed that a more sophisticated design 
would eliminate this loss. 

(e)      Examine the impact of the new theory on dy- 
namic motions of an annular jet GEM.    The 
work so far done in viscous entrainment of 
the cushion air indicates strongly thatTulin's 
concepts of "underfed" and "overfed" jet op- 
eration are erroneous and that the preducted 
damping would be quite different if the airflow 
were considered as being intimately tied up 
with the primary vortex. 

Intake Flow Theory 

The application of curvilinear flow theory to the flow into a skewed intake has 
been undertaken only for the case of no upstream boundary layer or flow dis- 
tortion. While it explains all of the observed effects (including the low pressure 
recoveries) and the phenomenon of lip stall, it would require a separate pro- 
gram as lengthy as the present one, to "tie-up" the subject adequately in the 
same way as the annular jet theory has been rounded out.   In view of the im- 
portance of this problem to many hardware applications, it is strongly suggest- 
ed that this be done. 

Curved Duct Flow Theory 

For rectangular ducts, the optimum curve shape for minimum diffusion loss 
must be investigated.   Secondary flows due to finite aspect ratio have not been 
considered at all in this report, and this should obviously be done before a gen- 
eral theory of curved duct losses can be produced.   Also, the work should be 
extended to include circular duct cross sections. 

When such a general theory has been developed and adequately checked out by 
experiment, it would be possible to define optimum duct bend shapes for mini- 
mum loss.   Needless to say, since ducts are used extensively in almost all 
aerospace hardware, the definition of low-loss shapes would be of almost uni- 
versal benefit. 
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Coanda Flow 

The potentialities of Coanda flow around a curved surface are as yet unknown, 
because the phenomenon has still not been analyzed coherently.    On general 
principles, it is felt that the present work should be extended, both theoreti- 
cally and experimentally, although there is (at the moment) no obvious hard- 
ware application in sight. 

Diffusion Theory 

The diffusion theory developed during this program appears to be a major 
breakthrough, even though it is not fully understood.   In work not reported 
herein, for example, this theory has been applied to the in viscid flow around 
a cylinder and a sphere, and calculated drag coefficients have been obtained 
in virtually exact agreement with measured values. 

There is a great need to find a "unifying theory" which relates this new ap- 
proach to the established boundary layer theory, to identify its limits of ap- 
plicability, and to understand its physical basis. 

Jet Flap Theory 

While significant steps have been made in understanding the jet flap problem 
and while the "thrust recovery" anomaly has been adequately resolved, there 
is obviously room for more work in this area.   It ought to be possible to obtain 
the same precision in the theoretical description of the phenomenon as is now 
possible for the annular jet. 
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APPENDIX I 

SCALE EFFECT IN ANNULAR JET FLOW 

Scale effects can be studied experimentally without any need for hypotheses to 
explain them.  Sufficient information is now available to indicate whether there 
is any very large variation of the cushion pressure ratio Aft Aft* wüh Reynolds 
number, and it seems that no such variation can be detected. 

Little attention seems to have been devoted to this subject in the literature.   In 
Reference IG,   Kuhn and Carter suggest that "there are no first order scale 
effects... *', on the basis of tests with 4,8, and 42~inch-diameter models. How- 
ever, it is doubtful whether the differences in Reynolds numbers between these 
models were large enough for a scale effect trend to become larger than the ex- 
perimental scatter, particularly since additional variables are introduced by the 
use of three-dimensional models. 

The comparison most free of extraneous variables is the two-dimensional flow 
case,   and some recent English work      now enables us to cover the range 
Re = 2 x 10   with two-dimensional rigs. 

The results of Reference 17 are compared with the measurements of Rawlings 
and Seiven in Figure 144, and a very large scale effect is at first sight seen to 
be present.   Although it is not ejcplicitly stated in Reference 17, however,  it 
can be inferred that the jet total head is measured upstream of the actual noz- 
zle.   Thus, even if the flow into the nozzle were perfect, we should still expect 
some loss from skin friction. 

Let us use exponential theory to obtain a rough idea of this loss.    The mass 
flow will be 

(414) 

so that the duct velocity is 

^     * ?±   * d^y .* -e. .    (4i5) 
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wet 

The skin friction force 

fv     -      A 0py) Ct 

Assuming   Z^    = mean length of one nozzle wall, 

(416) 

(417) 

» c (418) 

This has been evaluated for    ^  = 30° and Zpfe = 6.0, figures which are be- 
lieved to be about right for the Hughes rig.   As shown in Figure 145, skin friction 
gives the same order of apparent A^Ap.    variation with   Rc    as was actually 
observed. 

It is concluded that the apparent scale effect is illusory, and that there is no ap- 
preciable variation in the range 2000 ^  ^c ^ 200,000.    This is satisfactorily 
in accordance with mixing theory3, which indicates that scale has no effect on 
the turbulent or laminar mixing processes.   It also emphasizes the need for 
measuring APj   at the nozzle exit when appreciable skin friction loss is to be 
expected in the nozzle. 
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APPENDIX n 

ESTIMATION OF DRAG FROM TOTAL HEAD SURVEYS 

r 
tfrom Chapter XXIV of Reference 15, the drag of a body is f iven by the momen- 
tum integral 

.   /'-►. _ ,. \ J . 
(419) D     *    Jt-fJ   ^(^;-^,) o^ 

where A*,  is the velocity measured well downstream of the body, and **£ is the 
free-stream velocity. 

In a wind tunnel which draws air from ambient, 

(420) 

Substituting into Equation (419), 

it« 

-«ft 

In most experiments ZiBL ^C A4, if the rake is sufficiently far downstream; 

APH 

-oo 

This is the equation generally used in reduction of tunnel data. 
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APPENDIX m 

A NOTE ON THE THEORY OF A FREE VORTEX 

The classical theory of a vortex in in viscid flow, based on the irrotational pro- 
perties of an infinitely small fluid element, is very rigorous; see, for example, 
Chapter VII of Lamb. ♦ The basic results can be demonstrated much more sim- 
ply for two-dimensional flow, however, although at the expense of losing some 
of the rigor and elegance of the classical analyses of Helmholtz and Lord Kelvin. 

Figure 146.     Geometry of a Two-Dimensional Vortex. 

For a balance between centrifugal and pressure forces on the element shown in 
Figure 146, 

(pressure force) (centrifugal force). 

(423) 

*  Sir Horace Lamb, "Hydrodynamics," Sixth Edition, Dover Publications, 
New York, 1932, 
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Sit ' t*4 (424) 

But for conservation of total head, 

O 
(425) 

From Equation (425), 

Xf ** **•*• (426) 

+ •♦ ir^   .     P. 

If r  is constant throughout the fluid, •'VfL.   = 0.   Thus, substituting Equation 
(426) for ytifat     in Equation (424), 

-Vf        = constant. (428) 

This is the classic relationship which is used in potential flow theory.   However, 
there is another way of expressing Equations (424) and (425): 

From Equation (425), 

e^     -   •e(p--t). (429) 

Substituting fcr ^      in Equation (424), 

«tr 
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That Is, ^kt      -♦•      ^ • +        »      ^ • f5 • (430) 

This is identical with Equation (87) in the main body of the report. Thus, the 
general techniques developed are also applicable to the treatment of vortex 
fields, including the effects of viscosity. 

Integrating Equation (430), 

-to most problems, inviscid flow theory will apply at large values of 'f  , where 
ä^y   —*   0.   Equation (431) then takes the form 

where Jp*,    is the ambient static pressure and  r^    the total pressure in the 
vortex at large values of the radius. 

Equation (431) may then be written as 

(432) * -       i/^'        -(Po-K). 

Equation (432) can be used to study such problems as vortex flow in a real 
(viscous) fluid. 
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APPENDIX IV 

DIFFUSION LOSS MEASUREMENTS IN A PRE-CURVED NOZZLE 

It was shown in the main body of the report that a diffusion loss occurs in the 
nozzle of an annular jet and that it is somewhat larger than predicted by theory. 
The theory is based upon the assumption that an initially straight flow curves 
suddenly to a radius ((? ), and, of course, there is no means of assuming that 
this is so in a straight nozzle. 

With this in mind, we built a circular section fairing for the annular jet rig 
nozzle, as shown in Figure 147, in order to ensure that the air behaved as 
assumed in the theory. The total pressure was then measured by means of 
Kiel probe traverses, with and without this fairing in place. 

The results plotted in Figure 147 show a marked reduction in loss when the 
fairing is fitted,   the integrated loss now being almost exactly equal to the 
theoretical prediction. The experimental points do not lie along the theoret- 
ical curve, however, because the process of diffusion necessarily distorts 
the <L    axis, and this is not taken into account in the theory. 

It seems clear that if the fairing had been carefully blended into the nozzle to 
give a distributed total pressure rise (instead of being merely tangential to 
the nozzle surface), the total head loss would have been negligible. 
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